Maxwell's equations

B. KIRAN KUMAR
Lecturer in Physics
Govt Degree College
Rayachoti.

Maxwell

(13 June 1831 – 5 November 1879) was a Scottish physicist.

Famous equations published in 1861

Maxwell's equations: integral form

Gauss's law

$$\oint \mathbf{B} \cdot d\mathbf{S} = 0$$

Gauss's law for magnetism: no magnetic monopole!

$$\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I + \mu_0 \varepsilon_0 \iint_{\Sigma} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S} \qquad \text{Ampère's law}$$
 (with Maxwell's addition)

$$\oint_{\partial \Sigma} \mathbf{E} \cdot d\boldsymbol{\ell} = -\iint_{\Sigma} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

Faraday's law of induction (Maxwell–Faraday equation)

Relation of the speed of light and electric and magnetic vacuum constants

$$c = 1/\sqrt{\epsilon_0 \mu_0} = 299792458 \text{ m/s}$$

 $\epsilon_0 \approx 8.854 \cdot 10^{-12} \text{ As/Vm},$
 $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/Am},$

ϵ_0	permittivity of free space, also called the electric constant	As/Vm or F/m (farad per meter)
μ_0	permeability of free space, also called the magnetic constant	Vs/Am or H/m (henry per meter)

Differential operators

$$\nabla \cdot \qquad \text{the divergence operator} \ \nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \qquad \text{the curl operator} \quad \nabla \times \vec{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} \qquad \text{Other notation used}$$

$$\partial_x = \frac{\partial}{\partial x}$$

the partial derivative with respect to time

Transition from integral to differential form

Gauss' theorem for a vector field **F**(**r**)

$$\iiint_{V} (\nabla \cdot \mathbf{F}) \, dV = \oiint_{\mathbf{S}} (\mathbf{F} \cdot \mathbf{n}) \, dS.$$

Volume V, surrounded by surface §

Stokes' theorem for a vector field

F(r)

$$\iint_{\Sigma} \nabla \times \mathbf{F} \cdot d\mathbf{\Sigma} = \oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r},$$

Surface Σ , surrounded by contour i

Maxwell's equations: integral form

Gauss's law

$$\oiint \mathbf{B} \cdot \mathbf{dS} = 0$$

Gauss's law for magnetism: no magnetic monopoles!

$$\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I + \mu_0 \varepsilon_0 \iint_{\Sigma} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S}$$

Ampère's law (with Maxwell's addition)

$$\oint_{\partial \Sigma} \mathbf{E} \cdot d\boldsymbol{\ell} = -\iint_{\Sigma} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

Maxwell-Faraday equation (Faraday's law of induction)

Maxwell's equations (SI units) differential form

$$abla.\mathbf{E}=rac{
ho}{\epsilon_{\mathbf{0}}}$$
 ho density of charges

$$\nabla .\mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j} \qquad \nabla \times \mathbf{B} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{c^2 \epsilon_0} \mathbf{j}$$

j density of current

$$c^2 = \frac{1}{\mu_0 \epsilon_0}$$

Electric and magnetic fields and units

E electric field, <u>volt per meter</u>, V/m

B the magnetic field or magnetic induction tesla, T

electric displacement coulombs per square meter, field C/m^2

H magnetic field ampere per meter, A/m

Constitutive relations

These equations specify the response of bound charge and current to the applied fields and are called constitutive relations.

$$\mathbf{D}(\mathbf{r},t) = \varepsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t)$$

P is the polarization field,

$$\mathbf{H}(\mathbf{r},t) = \frac{1}{\mu_0} \mathbf{B}(\mathbf{r},t) - \mathbf{M}(\mathbf{r},t),$$

M is the magnetization field, then

$$\mathbf{D} = \varepsilon \mathbf{E}, \quad \mathbf{H} = \mathbf{B}/\mu$$

where ε is the permittivity and μ the permeability of the material.

Wave equation

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} = 0$$

$$\nabla \times (\nabla \times \overrightarrow{B}) = \nabla(\nabla \cdot \overrightarrow{B}) - \nabla^2 \overrightarrow{B} = -\nabla^2 \overrightarrow{B}$$

$$\nabla \times \frac{\partial}{\partial t} (\overrightarrow{E}) = \frac{\partial}{\partial t} (\nabla \times \overrightarrow{E}) = \frac{\partial}{\partial t} (-\frac{1}{c^2} \frac{\partial}{\partial t} \overrightarrow{B}) = -\frac{1}{c^2} \frac{\partial^2 \overrightarrow{B}}{\partial t^2}$$

Double vector product rule is used $\mathbf{a} \times \mathbf{b} \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

$$\nabla^2 \overrightarrow{B} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{B}}{\partial t^2} = 0$$

$$\nabla^2 \overrightarrow{E} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = 0$$

),

2 more differential operators

$$\nabla^2$$
 or Δ Laplace operator or Laplacian $=\frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2}$

d'Alembert operator or d'Alembertian

Plane waves

Thus, we seek the solutions of the form:

$$\overrightarrow{B} = \overrightarrow{B}_0 Exp[i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)]$$

$$\overrightarrow{E} = \overrightarrow{E}_0 Exp[i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)]$$

From Maxwell's equations one can see that

Energy transfer and Pointing vector

Differential form of Pointing theorem

$$-\frac{\partial u}{\partial t} = \nabla \cdot \mathbf{S} + \mathbf{J} \cdot \mathbf{E},$$

$$u = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}). \qquad u = \frac{1}{2} \left(\varepsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0} \mathbf{B}^2 \right)$$

u is the density of electromagnetic energy of the field

Integral form of Pointing theorem

$$-\frac{\partial}{\partial t} \int_{V} u dV = \oiint \mathbf{S} \cdot d\mathbf{A} + \int_{V} \mathbf{J} \cdot \mathbf{E} dV$$

Energy quantities continued

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial$$

Observable are real values:

$$\overrightarrow{B} = \overrightarrow{B}_{\text{max}} \cos[i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t + \Delta \varphi)]$$

$$\overrightarrow{E} = \overrightarrow{E}_{\text{max}} \cos[i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)]$$

$$I = S_{av} = E_{\text{max}}^2 / 2c\mu_0 = cB_{\text{max}}^2 / 2\mu_0 = cu_{av}$$

$$u_{av} = E_{\text{max}}^2 / (4c^2\mu_0) + B_{\text{max}}^2 / 4\mu_0$$