## Maxwell's equations

## B. KIRAN KUMAR

 Lecturer in Physics Govt Degree College Rayachoti.
## Maxwell

(13 June 1831-5 November 1879) was a Scottish physicist.


Famous equations published in 1861

## Maxwell’s equations: integral form

$$
\begin{array}{cl}
\notint_{\mathbf{E}} \cdot \mathrm{dS}=\frac{Q(V)}{\varepsilon_{0}} & \begin{array}{l}
\text { Gauss's } \\
\text { law }
\end{array} \\
\oiint \mathbf{B} \cdot \mathrm{dS}=0 & \begin{array}{l}
\text { Gauss's law for magnetism: } \\
\text { no magnetic monopole! }
\end{array} \\
\oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d} \ell=\mu_{0} I+\mu_{0} \varepsilon_{0} \iint_{\Sigma} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathrm{dS} \quad \begin{array}{l}
\text { Ampère's law } \\
\text { (with Maxwell's addition) }
\end{array} \\
\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \ell=-\iint_{\Sigma} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{~d} \mathbf{S} \quad \begin{array}{l}
\text { Faraday's law of induction } \\
\text { (Maxwell-Faraday equation) }
\end{array}
\end{array}
$$

## Relation of the speed of light and electric and magnetic vacuum constants

$$
\begin{aligned}
& c=1 / \sqrt{\epsilon_{0} \mu_{0}}=299792458 \mathrm{~m} / \mathrm{s} \\
& \epsilon_{0} \approx 8.854 \cdot 10^{-12} \mathrm{As} / \mathrm{Vm}, \\
& \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{Vs} / \mathrm{Am},
\end{aligned}
$$

permittivity of free space, also called the electric constant
permeability of free space, also called the magnetic constant

As/Vm or F/m (farad per meter)

Vs/Am or $\mathrm{H} / \mathrm{m}$ (henry per meter)

## Differential operators

$\nabla \cdot \quad \begin{aligned} & \text { the divergence operator } \nabla \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z},{ }_{\text {div }}\end{aligned}$
$\nabla \times \quad$ the curl operator $\nabla \times \vec{A}=\left\lvert\, \begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array} \quad\right.$ Other notation used curl, rot

$$
\left|\begin{array}{lll}
\overline{\partial x} & \overline{\partial y} & \overline{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|
$$

$$
\partial_{x}=\frac{\partial}{\partial x}
$$

$\partial$
the partial derivative with respect to time
$\partial t$

## Transition from integral to differential form

Gauss' theorem for a vector field $\mathbf{F}(\mathbf{r})$

$$
\iiint_{V}(\nabla \cdot \mathbf{F}) d V=\oiint_{S}(\mathbf{F} \cdot \mathbf{n}) d S
$$

Volume V, surrounded by surface 〔

Stokes' theorem for a vector field F(r)

$$
\iint_{\Sigma} \nabla \times \mathbf{F} \cdot d \boldsymbol{\Sigma}=\oint_{\partial \Sigma} \mathbf{F} \cdot d \mathbf{r},
$$

Surface $\Sigma$, surrounded by contour ,


## Maxwell’s equations: integral form

$$
\begin{array}{cc}
\notint_{\mathbf{E} \cdot \mathrm{d} \mathbf{S}=\frac{Q(V)}{\varepsilon_{0}}} \quad \text { Gauss's law } \\
\oiint_{\mathbf{B} \cdot \mathrm{d} \mathbf{S}=0} \quad \begin{array}{l}
\text { Gauss's law for magnetism: } \\
\text { no magnetic monopoles! }
\end{array} \\
\oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d} \ell=\mu_{0} I+\mu_{0} \varepsilon_{0} \iint_{\Sigma} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathrm{dS} & \begin{array}{l}
\text { Ampère's law } \\
\text { (with Maxwell's addition) }
\end{array} \\
\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \ell=-\iint_{\Sigma} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{~d} \mathbf{S} \quad \begin{array}{l}
\text { Maxwell-Faraday equation } \\
\text { (Faraday's law of induction) }
\end{array}
\end{array}
$$

## Maxwell's equations (SI units) differential form

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{Q}} \quad \rho \text { density of charges } \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
& \nabla \times \mathbf{B}-\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{j} \quad \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\frac{1}{c^{2} \epsilon_{0}} \mathbf{j} \\
& \quad \mathrm{j} \text { density of current } \\
& c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}
\end{aligned}
$$

## Electric and magnetic fields and units



## Constitutive relations

These equations specify the response of bound charge and current to the applied fields and are called constitutive relations.

$$
\mathbf{D}(\mathbf{r}, t)=\varepsilon_{0} \mathbf{E}(\mathbf{r}, t)+\mathbf{P}(\mathbf{r}, t)
$$

$\mathbf{P}$ is the polarization field,

$$
\mathbf{H}(\mathbf{r}, t)=\frac{1}{\mu_{0}} \mathbf{B}(\mathbf{r}, t)-\mathbf{M}(\mathbf{r}, t),
$$

$\mathbf{M}$ is the magnetization field, then

$$
\mathbf{D}=\varepsilon \mathbf{E}, \quad \mathbf{H}=\mathbf{B} / \mu
$$

where $\varepsilon$ is the permittivity and $\mu$ the permeability of the material.

## Wave equation

$$
\begin{align*}
& \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
& \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\frac{1}{c^{2} \epsilon_{0}}-\mathrm{i} \\
& \nabla \times(\nabla \times \vec{B})=\nabla(\nabla \cdot \vec{B})-\nabla^{2} \vec{B}=-\nabla^{2} \vec{B} \\
& \nabla \times \frac{\partial}{\partial t}(\vec{E})=\frac{\partial}{\partial t}(\nabla \times \vec{E})=\frac{\partial}{\partial t}\left(-\frac{1}{c^{2}} \frac{\partial}{\partial t} \vec{B}\right)=-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}} \\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \\
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
\end{align*}
$$

## 2 more differential operators

$\nabla^{2}$ or $\Delta$ Laplace operator or Lapladiả̉ $=\frac{\partial^{2} A_{x}}{\partial x^{2}}+\frac{\partial^{2} A_{y}}{\partial y^{2}}+\frac{\partial^{2} A_{z}}{\partial z^{2}}$
d'Alembert operator or d'Alembertian

$$
\perp=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta .
$$

## Plane waves

Thus, we seek the solutions of the form:

$$
\vec{B}=\vec{B}_{0} \operatorname{Exp}[i(\vec{k} \cdot \vec{r}-\omega t)]
$$

$$
\vec{E}=\vec{E}_{0} \operatorname{Exp}[i(\vec{k} \cdot \vec{r}-\omega t)]
$$

From Maxwell's equations one can see that

$$
\begin{aligned}
& \nabla \times \vec{B}=i \vec{k} \times \vec{B} \quad \text { is parallel to } \vec{E} \\
& \nabla \times \vec{E}=i \vec{k} \times \vec{E} \text { is parallel to } \vec{B}
\end{aligned}
$$

## Energy transfer and Pointing vector

Differential form of Pointing theorem
$-\frac{\partial u}{\partial t}=\nabla \cdot \mathbf{S}+\mathbf{J} \cdot \mathbf{E}$,
$u=\frac{1}{2}(\mathbf{E} \cdot \mathbf{D}+\mathbf{B} \cdot \mathbf{H}) . \quad u=\frac{1}{2}\left(\varepsilon_{0} \mathbf{E}^{2}+\frac{1}{\mu_{0}} \mathbf{B}^{2}\right)$
$u$ is the density of electromagnetic energy of the field $\mathbf{S}=\mathbf{E} \times \mathbf{H} \| \mathbf{n}=\frac{\mathbf{k}}{k} \quad \mathbf{S}$ is directed along the propagation

Integral form of Pointing theorem


$$
-\frac{\partial}{\partial t} \int_{V} u d V=\oiint \mathbf{S} \cdot d \mathbf{A}+\int_{V} \mathbf{J} \cdot \mathbf{E} d V
$$

## Energy quantities continued

$$
\begin{aligned}
& \vec{B}=\vec{B}_{\max } \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& \vec{E}=\vec{E}_{\max } \exp [i(\vec{k} \cdot \vec{r}-\omega t)]
\end{aligned}
$$

$$
B_{\max }=E_{\max } / c
$$

Observable are real values:

$$
\begin{aligned}
\vec{B}= & \vec{B}_{\max } \cos [i(\vec{k} \cdot \vec{r}-\omega t+\Delta \varphi)] \\
\vec{E}= & \vec{E}_{\max } \cos [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& I=S_{a v}=E_{\max }^{2} / 2 c \mu_{0}=c B_{\max }^{2} / 2 \mu_{0}=c u_{a v} \\
& \quad u_{a v}=E_{\max }^{2} /\left(4 c^{2} \mu_{0}\right)+B_{\max }^{2} / 4 \mu_{0}
\end{aligned}
$$

